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ON THE FORCE ACTING ON A CYLINDER IN A STEADY STREAM 
OF VISCOUS FLUID AT LOW REYNOLDS NUMBER* 

M.M. VASIL'EV 

The plane flow over a circular cylinder of a steady stream of viscous fluid at low 

Reynolds numbers is considered. A rigorous derivation of Lamb's formula for dragis 
given with an estimate of the residual term. 

1. The flow over a cylindrical body of a plane-parallel steady stream of viscous incom- 

pressible fluid is defined by the system of Navier-Stokes equations with boundary conditions 

divu=O 

vIc=-uw lim u (5) = 0 (l”2) 
IXl-a 

where u = u-u,, u and p are the dimensionless velocity vector and pressure, respectively, 2h 

is the Reynolds number, u, is the vector of the oncoming stream velocity, z = (z1,z2),and C is 
the contour of the transverse cross section Bof the body in the stream. We assume the coord- 
inate origin to be inside contour Cwith the coordinate axes directed so that U, = (I,@. 

Linear Oseen equations 

Au - 2h (u_.V) v - 2h grad p = f (x), div u = 0 (1.3) 

are used as an auxilliary system in the investigation of the boundary value problem (1.1),(1.2), 

whose solution can be represented in the form of series /l/ 

v (4 h) = v(O) (I, h) + & u(b) (I, h) (2h)k (1.4) 

that is convergent for reasonably low Reynolds numbers. In formula (1.4) @)(s,h)represents the 

solution of the homogeneous system of Oseen equations (with f(z)= 0) with boundary conditions 

(1.2). and ~fi')(x,h) (l> 1) is the solution of the inhomogeneous system (1.3) for 

with null boundary conditions v(c=O,limu=O (lxl+oo). 

2. The formula for drag of a body in a steady three-dimensional stream of a viscous in- 

compressible fluid had been obtained earlier (**). Using similar reasoning it is possible to 

obtain that formula also for a two-dimensional plane flow 

(2.1) 

*Prikl.Matem.Mekhan.,45,pp.845-848,198l 

**) K.I. Babenko, The theory of perturbations of steady flows of viscous incompressible fluid 

at low Reynolds numbers. Preprint No.79, Inst. Prikl.Matem., Akad. Nauk SSSR, 1975. 
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where F,(O) is the drag in the Oseen approximation when D = R’\B, w@‘) is the velocity of per- 

turbations in that approximation when u- = (--1,O). It is assumed that summation from 1 to 2 

is carried out over twice recurrent subscripts. 
Formulas (2.1) are obtained using the integral representation of solution and some of its 

estimates which appear in /2/ and, also, the readily verified equality 

s 
ZZ,j(~-~)n,(s)dZ,=-~++(l) 

CR 

where CR is a circle of radius R(R +co) and Hij is the fundamental solution of the Oseen 

equation 

T = Yk-5k 
k 

-l--- 
,=-y, $,, -Kl(h(s--y)ea(x,-ul)l (k=l, 2) 

Q = K. (h 1 z - y I)e”(=l-u~) 

where Ke, K, are MacDonald functions. 
3. Formula (2.1) enables us to obtain an asymptotic formula for the determinationofdrag 

of a circular cylinder in the case of low Reynolds number. The drag F,(O) of a cylinder appear- 

ing in that formula in the Oseen approximation was investigated in /3,4/ and other works. 

Solution of the problem of flow over a circular cylinder was obtained in /3/ in polar coordin- 

ates r,e in the form 

where I,, K, are modified Bessel functions of arguments 5 = hr, and A,,, R, are constants. 

Boundary conditions on the body (at r = 1)u, = --cos~,u~ = sin 8 are satisfied when 

(3.1) 

%m = (J~,neI + Km--l)(Jm-,, -k Jw,) + Km (Zen-, + Zm-n,, + Z,u+,-, + Z,,,,,) 

Y mn = (Z(nz+1 - Km-J(Zn!-, - J,,,,) + h-m (Zm-n-, - zm-,I+, - Zmin-, + rm+n+J 

(3.2) 

Eliminating A,, we can obtain the following system of equations for the determination of 

coefficients B,: 

jj 11mAm,n(h)=4P,r (n = 1, 2, . ..) 
?ll=O (3.3) 

A,,, = Zm-Am-, + Z,+,Km+l + K, (I,,,-,,+, + I,+,-,) (3.4) 

Numerical investigation of the behavior of coefficients B, carried out in /3/ at some 
Reynolds number had shown that these coefficients rapidly decrease in absolute value, as m is 
increased. Calculations have, also, shown that coefficient B. decreases as the Reynoldsnumber 
is lowered. The formulas presented in /3/ were limited to a single coefficient B,. 

The method proposed by K-1. Babenko is used below for analyzing the solution of Eqs.(3.3). 
Setting C, = Bm-ii\m_l,m, pnm = Am_l,nl.\m_l,m we obtain for the determination of C,,C,,... the 
system of equations 

5 YnmC,=46,1 (n=l,2,...) (3.5) 
rn=l 
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with diagonal elements pnn equal unity. We denote the remainder of matrices M = (p,,,,,) and the 
unit matrix E x (I&,) by ,v, and rewrite the system of Eqs.(3.5) in the form 

(E .\m N)C = J (3.6) 

c = (C,, c,, . . .)‘, f = (4, 0, 0, . . .)’ 

where the prime indicates transposition. 

It is possible to show that the elements of matrix N = (v,,,)satisfy for (n,na)#(l,Z) the 

inequality v,, < CII,_,I (A), and v12 == 2Ii0 @)I, (h)+ 0 (h). This and Eq. (3.6) imply that for fairly 
small h 

C = (E + N)-‘f = f - Nf + N’f - . . . = f + 0 (hS) 

s = I:'? - y - In (h i 2) 

where yrz.O.57721 is the Euler constant. 

The following formula was obtained in /5/ for the drag of a cylinder: 

(3.7) 

The substitution of expression (3.1) for U, yields 

From this andformulas (3.4) and (3.7) follows that 

Hence formula (2.3) may be written as 

,y lJk 2 dy + 0 (XS) 
k 

(3.8) 

4. To evaluate the integral 

wI”‘uk .?$ dy = 
ado) 

ujvk __!__ dy 
k s 

” n ayk 

which appears in formula (3.8), we can use the estimates ui and avj(?.'dyk, as h+O in /1,6/ 

whichimplythat 
1 J / < Ckl In-" (1 ! h) 

For the drag 

expression: 

of a circular cylinder at low Reynolds number we, thus, obtain the following 

F1==. 
h [lo (A) K,(&il (A) K,(h)] + O it 4) (4.1) 

This formula appeared in /7/ without an estimate of the residual term. Separating in 

(4.1) the principal term, we obtain Lamb's formula /8/ with the estimate of the residue 

F, = e$- + 0 ($- hl-3 +) (4.2) 

Formulas (4.1) and (4.2) for the drag of a cylinder correspond to formulas obtained in 

/9/ by the method of merging asymptotic expansions. 

The author thanks K-1. Babenko for valuable discussions. 
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